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Genomic Predictions/Selection

Reference/training population:

Candidate population

=y Xb +Zu +e
Model training
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Factors effecting the prediction Accuracy
• Model selection/performances: varies based on marker assumption 

and effects.
• Gene effects:  Additive and non-additive contributions.
• Heritability:  highly heritable traits have high prediction accuracy.
• Linkage disequilibrium:  reduced prediction accuracy if LD decays in 

advanced generations.

Desta and Ortiz, 2014



Prediction models

y=µ+ ∑" #" $"+ %

Basic standard model

Vector of trait phenotype

overall mean

k is number of markers

Incidence marker matrix or allelic state

marker effect

residual effects, where %~(0, *+,)

1ˆ ( )T T-=β X X X yOrdinary least squares p>>>n



y=µ+ ∑" #" $"+ %

1ˆ ( )T T-=β X X X y

estimate $ through OLS 

Problem is number of markers (p) is >>>>number of individuals (p)
• XTX is singular, determinant is 0, not invertible 
• Multicollinearity: produces singular matrix again
• Predictors are highly correlated 
• Insufficient degrees of freedom  to estimate all marker effects at the same time
OLS estimates are not valid in that case.

To address this issues various models has been proposed
o Constrain possible effects
o fit the markers as random effects

If the effects of markers are estimated simultaneously OLS is not valid



Overview of Prediction Models

Adapted from manuscript Desta and Ortiz, 2014



Ridge-Regression BLUP (rr-BLUP)

y=µ+ ∑" #" $"+ %

estimate $ by adding positive constraint

56789: = (=>=)@A+ CD) => y

• We add constant to diagonal, thus it is invertible
• Degree of shrinkage depends upon C, larger the C

larger is the shrinkage

• We basically shrink OLS estimates towards 0
• λI term reduces collinearity and prevents the 

matrix XTX from becoming singular.

5EFG
A + C

Ridge regression induces homogeneous shrinkage 
and it depends upon allele frequency
Assumes all markers have same variance with 
small but non-zero effect.
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Cross validation
evaluate prediction performance

§ take model uncertainty into account

§ divide data into training and testing sets

§ train the model in the training set

§ evaluate predictive performance in the testing set

§ predictive correlation: ! = #$!(&, &()*+,-.*+)





Cross-validation for rrBLUP

§ Divide the data into training and testing set

Training set ∈ (#$%&'('() , +$%&'('())
Testing set ∈ (#$-.$'() , +$-.$'())

#$%&'('()/ 0123454567123454568 912345456

§ Perform cross-validation

ý $-.$'()/01:;145671:;1456
cor (#$-.$'() , ý $-.$'()) = =>? (#$-.$'() , +$-.$'()@$-.$'()

Where, 
ý= predicted value
X= n x m matrix



Dimension Reduction methods
Principle Component Regression
Singular or eigen value decomposition: Provides additional in site into nature of Ridge regression

y=µ+ ∑" #" $"+ %

#"&'()*

replace y with 
eigenvectors and regress 
phenotypes directly on 
eigenvectors or principle 
components  

U= n x m orthogonal matrix
D= n x m diagonal matrix with singular values
V= n x n orthogonal matrix

+,-. = 012345 y
Reason is to avoid inverse
Suitable when predictors are correlated
And calculations are tedious



• Ordinary least squares (OLS) when we know QTL or only one marker 
tag one QTL.
• What if we have dense marker system and account marker 

associations or LD between markers?

Compute Genomic relationship matrix (GRM)
Mixed model approach 



y=µ+ ∑" #" $"+Zu+ %
&~((*$, ,-, ./0e)

$" is fixed effect
u is random effect with u~( 0, 2/0-
and % ~( 0, ./03 , typically R is identity 
matrix

Henderson mixed model equation

Mixed model approach

BLUE

BLUP
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Genomic BLUP (gBLUP)

y=µ+ +Zu+ !

Equivalence between rrBLUP and gBLUP

GRM to account for mendelian sampling



Construction of G matrix

3 steps
1. Create a centered X matrix
2. Create the cross product
3. Divide it by ∑"#$% 2'((1-'()

) = ++,
∑"#$% 2'( (1−'()

First G matrix, VanRanden (2008)

- = ./ + 1
u~3 0, )678

678 is additive variance = ∑"#$% 2'( (1−'(



Bayesian approach
Estimates variance components and solve the mixed model equation in single framework

! " # = !(", #)
!(#)

#= observed value
"= parameter( unobserved value)

Bayesian models differ only with respect to prior, pick prior that provides best fit
Shrinkage inducing mechanism is included in the model mainly by specifying an 
appropriate prior density for regression coefficients



Bayesian approaches
Bayesian ridge regression
Induces homogeneous shrinkage of all marker effects towards zero and yields a Gaussian distribution of marker 
effects 
Bayesian LASSO
Combines shrinkage and variable selection methods
Has an exponential prior on marker variances resulting in a double exponential (DE) distribution.  
The density distribution has a higher mass density at zero and heavier prior tails compared with a Gaussian 
distribution 
Bayes A
Utilizes an inverse chi-square (x2) on marker variances yielding a scaled t-distribution for marker effects
it shrinks tiny marker effects towards zero and larger values survive 
Has a higher peak of mass density zero compared with the DE distribution 
BayesB

Fraction of markers with zero effect
BayesC
assumes t-distribution one with large variance for SNP fraction and other with small variance 

https://doi.org/10.1016/j.tplants.2014.05.006

More details on The Bayesian Alphabet can be found in Gianola, 2013, 10.1534/genetics.113.151753

https://dx-doi-org.libproxy.unl.edu/10.1534/genetics.113.151753


Prediction studies in Literature

Non-parametric 
parametric 

Comparison and correlation between models



Imputation Cross-validation



Cross-validation for k-mean clustering





Demonstration in R


