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Factors effecting the prediction Accuracy

* Model selection/performances: varies based on marker assumption
and effects.

e Gene effects: Additive and non-additive contributions.
* Heritability: highly heritable traits have high prediction accuracy.

* Linkage disequilibrium: reduced prediction accuracy if LD decays in
advanced generations.

Desta and Ortiz, 2014



Prediction models

Basic standard model

Incidence marker matrix or allelic state

residual effects, where e~(0, 52)

Y=+ ) Xi Prt €

Vector of trait phenotype k is number of markers

marker effect
overall mean

Ordinary least squares ﬁ — (XTX)_I XTy p>>>n



B=(X"X)"'X"y
If the effects of markers are estimated simultaneously OLS is not valid

Problem is number of markers (p) is >>>>number of individuals (p)

e XX s singular, determinant is 0, not invertible

* Multicollinearity: produces singular matrix again

* Predictors are highly correlated

* Insufficient degrees of freedom to estimate all marker effects at the same time
OLS estimates are not valid in that case.

To address this issues various models has been proposed
o Constrain possible effects
o fit the markers as random effects



Overview of Prediction Models
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Ridge-Regression BLUP (rr-BLUP)
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Ridge regression induces homogeneous shrinkage
and it depends upon allele frequency
Assumes all markers have same variance with

small but non-zero effect.




Cross validation

evaluate prediction performance

take model uncertainty into account
divide data into training and testing sets
train the model in the training set

evaluate predictive performance in the testing set

predictive correlation: 1 = cor (Y, Ypredicted)



K-fold Cross-validation

‘ Test | Train ‘ Train ‘ Train
Train \ Test I Train ‘ Train
Train ‘ Train ‘ Test \ Train
Train Train Train

run 1

run 2

run 3

run 4



Cross-validation for rrBLUP

= Divide the data into training and testing set

Training set € (Ytraining ) Xtraining)
Testing set € (:Vtesting ) Xtesting)

ytraining= Xtrainingﬁtraining"‘ €training

Where,
=  Perform cross-validation Y= predicted value

X=n x m matrix

Y testing =Xtesting .Btesting

cor (Ytesting Y testing) = cor (Ytesting ’ XteStinngtBSting



Dimension Reduction methods

Principle Component Regression
Singular or eigen value decomposition: Provides additional in site into nature of Ridge regression

replace y with
eigenvectors and regress

phenotypes directly on —_— — 1 T
eigenvectors or principle ﬁOLS - V D U y
components

Reason is to avoid inverse
Suitable when predictors are correlated
And calculations are tedious

U= n x m orthogonal matrix
D= n x m diagonal matrix with singular values
V= n x n orthogonal matrix



* Ordinary least squares (OLS) when we know QTL or only one marker
tag one QTL.

* What if we have dense marker system and account marker
associations or LD between markers?

Compute Genomic relationship matrix (GRM)
Mixed model approach



Mixed model approach

B=(XV'X) XV'ly, with BLUE(Xp)=Xp
y ‘

yNN(X,B: Zu, R0'2e) Henderson mixed model equation
V=Zu,Ro*e - A
XX X1 B [Xy
2 -
' ' -1 0°¢ . X7
B is fixed effect IX T1G oZu | U] _z Yi

u is random effect with U~N(O, GO‘ZU)
and € ~N (0, Ro?e), typically R is identity
matrix

=G ZV"'(y - XB) = BLUR(u)



Genomic BLUP (gBLUP)

GRM to account for mendelian sampling

2

A —10
U= [I + G 1—%] y

Ou

Equivalence between rrBLUP and gBLUP

For gBLUP the Var(y) = ZGZ'02 + lo2
For rrBLUP the Var(y) = XX'o3 + log



Construction of G matrix

y=Zu+t ¢ 3 steps
u~N (O G 0-2 Cl) 1. Create a centered X matrix
! 2. Create the cross product
o2a is additive variance = /%, 2pj (1-p; 3. Divide it by Y.iZ; 2p;(1-p;)

B XXxT
2?;1 ij (1_pj)

First G matrix, VanRanden (2008)

G




Bayesian approach

Estimates variance components and solve the mixed model equation in single framework

P(6,y)
P(y)

y= observed value
0= parameter( unobserved value)

POly) =

Bayesian models differ only with respect to prior, pick prior that provides best fit
Shrinkage inducing mechanism is included in the model mainly by specifying an
appropriate prior density for regression coefficients



Bayesian approaches

Bayesian ridge regression

Induces homogeneous shrinkage of all marker effects towards zero and yields a Gaussian distribution of marker
effects

Bayesian LASSO

Combines shrinkage and variable selection methods

Has an exponential prior on marker variances resulting in a double exponential (DE) distribution.

The density distribution has a higher mass density at zero and heavier prior tails compared with a Gaussian
distribution

Bayes A

Utilizes an inverse chi-square (x2) on marker variances yielding a scaled t-distribution for marker effects

it shrinks tiny marker effects towards zero and larger values survive

Has a higher peak of mass density zero compared with the DE distribution

BayesB

Fraction of markers with zero effect

BayesC

assumes t-distribution one with large variance for SNP fraction and other with small variance

More details on The Bayesian Alphabet can be found in Gianola, 2013, 10.1534/genetics.113.151753

https://doi.org/10.1016/j.tplants.2014.05.006


https://dx-doi-org.libproxy.unl.edu/10.1534/genetics.113.151753

Prediction studies in Literature

Genomic Selection in Plant Breeding: A Comparison of Models
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Fig. 1 Fig. 2
Comparison of two missing data imputation methods, EM and mean, based on the Predictive ability from the best within-year cross-validation model (within: year 2015
predictive ability from the GBLUP (above) and RKHS (below) cross-validation models RKHS model with the marker effect and both heading date and disease index as
(with SNP effect only) across a gradient of SNP call rate; TP training population; covariates) and the best cross-year prediction model (cross: year 2014 predicting 2015
bandwidth parameter was set to 0.1 for all RKHS models RKHS model with the marker effect and heading date as covariate) across subsets of

marker filtered by absolute pairwise correlation threshold (t)
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Figure 1 Description of the four cross-validation designs used to assess the impact of underlying population structure. The partitions within each
cluster were formed by randomly sampling without replacement. Replication was achieved by rotating partitions within each design to provide all
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Cross-validation for k-mean clustering
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combinations of partitions and clusters. All designs had consistent training and validation set sizes of 1,000 and 500 respectively.

Prediction accuracy (r)
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Cross validation design

Figure 4 Boxplots showing pre-
diction accuracies from the
K-means clustering method for
each category of training and
validation set combinations, de-
tailed in section 2.5.1. Prediction
accuracy was calculated by cor-
relating predictions of the vali-
dation set to the corresponding
additive GBLUP values from the
full model with all lines included.
TKW represents thousand kernel
weight.
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Figure 6 Plot showing the effect of marker density on prediction
accuracy for each trait. Prediction accuracy was assessed by perform-
ing random five-fold cross-validation for each selection of markers,
and correlating predictions of the validation set to the corresponding
additive GBLUP values from the full model with all lines included.
Marker subsets were selected to be evenly distributed over the
genome and to have high minor allele frequency.



Demonstration in R



