
Lecture: GWAS and Population Stratification

Waseem Hussain
Postdoctoral Research Associate

03/29/2018



Description

 What is GWAS and Work flow for GWAS

 Population stratification

 Methods to account for PS in GWAS

 Statistical methods for GWAS



Introduction
 A natural population survey to determine marker trait associations using 

genome-wide markers.

 Exploits LD between markers

Germplasm Collection
(Diversity Panel)

Phenotyping
(Traits or morphological 

variations)

Genotyping
(Haplotypes)

GWAS

Statistical models

Associated Loci



Rational for Association mapping

• Individuals should be unrelated, 
presumed to be distinct.

• Powerful for common variants  and 
Minor allele frequency need to be > 
5%

Balding, 2006
https://www.nature.com/articles/nrg1916.pdf



Rational for Association mapping

• Sufficiently large sample

• Polymorphic alleles covering whole 
genome

• Statistically powerful methods to detect 
genetic associations

• Individuals should be unrelated, 
presumed to be distinct.

• Powerful for common variants  and Minor 
allele frequency need to be > 5%

Balding, 2006
https://www.nature.com/articles/nrg1916.pdf



Work flow for GWAS

Quality control

Compute kinship and Population structure 

Perform statistical Associations

Identify associated loci

Downstream analysis

 Genotyping rate, missing data (imputations)
 Minor allele frequency (ideal 5%)
 Heteroscedasticity
 Multicollinearity

 PCA and Mixed model analysis

 Linear and Mixed Models



 Test statistics inflated, high false positive rate
 Inflation of genomic heritability
 Overestimation of prediction accuracy

Balding, 2006
https://www.nature.com/articles/nrg1916.pdf

Population stratification

Difference in allele frequencies between sub-populations due to ancestry

 Can lead to spurious associations if allele frequencies vary between subpopulations..



Methods to control Population stratification

 Genomic Control: Estimates inflation factor λ

λ > 1 indicates stratification

Limitation:   λ same for all markers

 Structured Association methods: Assigns individuals to hypothetical 
subpopulations

Correct number of subpopulations can never be fully resolved 

 Principle component analysis: Provides fast and effective way to 
diagnose the population structure

 Mixed-Model Approaches: Involves Kinship and cryptic relatedness



Principle Component Analysis

• Reduce dimensions of data into few components.

• PCA is to find a new set of orthogonal axes (PCs), each of which is made up 
from a linear combination of the original axes

• Good in detecting major variations in data.

• PCA used in GWAS to generate axes of major genetic variation to account 
for structure.



How PCA is conducted to account for population structure

n x m matrix

Decompose the 
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Algorithm for PCA: Eigen and Single Value Decomposition

Step 1: Compute the variance-covariance as G= XXT/N-1

Step 2: Compute the Eigen decomposition of covariance matrix (G=UDUT)

Singular Value Decomposition SVD  (X=U∑VT) (in case of m x n matrix and dense SNP data)

U= is an n x m orthogonal matrix of dimensions n x m

∑= is a diagonal matrix of dimensions n x n

V= orthogonal matrix of n x n

Step 3:  Select the top K eigenvalues/PCs that are statistically significant

Step 4: Include the significant eigenvectors in the linear regression model or genotype matrix in mixed model.

 Singular-decomposition picks out directions in the data along 

which the variance is maximised. 

 Singular represent the variance of the data along these 

directions.



Accounting for Population structure

Q-Q plot of p-values

Expected p-values without accounting PS

Expected p-values after accounting PS

Expected p-values under null hypothesis



 PCA only accounts for fixed effects of genetic ancestry

 Does not account for relatedness between individuals.

Peterson et al. 2010
doi: 10.1038/nrg2813

 Mixed Models
 Use both fixed effects (candidate SNPs and fixed covariates) and random 

effects (the Genotypic covariance matrix)
y= Wa + u+ε
var(u)=  б2K

 K is Kinship matrix (pairwise genomic similarity of Individuals)
 Structure of Kinship matrix reflects:

Population structure
Family structure
and Cryptic Relatedness



Korte and Farlow Plant Methods 2013, 9:29
http://www.plantmethods.com/content/9/1/29

GWAS using linear model and Mixed model

Linear Model

Mixed model



Statistical methods for GWAS

Ordinary least squares

Model: y= Wa + e

To find “a”, effective size of SNP, we minimize the residual sum of squares.
And least square estimator of “a” is given as

â is the vector of regression coefficient for markers, i.e., effect size of SNPs
if the Gauss-Markov theorem is met, E[â]=a → BLUE

No. of SNPs (n) is greater than individuals (m)  n>>>m

(W`W)-1 Does not exist, matrix is singular

Assumptions for Guass-Markov to hold true
 Population parameter linear
 No collinearity 
 Homoskesdactic errors



Single marker regression 

 One marker at a time tested for significance 

 Problem: Marker effect may be exaggerated

The expectation of â is

OLS estimate for single SNP model

 OLS is biased if full model holds but fit a mis-specified model
 the same applies when there are more than two SNPs



Linear mixed models for GWAS
• Single marker-based mixed model association (MMA)

• Fit one marker at a time (Yang et al. 2014)

• G (genomic relation matrix) captures population structure and polygenic effects

• Double counting/fitting

SNP appears twice in model (once fixed and other time random)

Candidate/tested markers used to calculate structure and family relatedness

• Alternatively,

• Exclude candidate markers from G, using model one chromosome out

where −k denotes the kth chromosome removed



Comparison of K_Chr model and traditional Unified Mixed Linear Model in the Goodman 
diversity panel (Maize diversity panel of 281 lines)

Chen and Lipka, 2016
doi:10.1534/g3.116.029090/-/DC1



Multiple marker models

• Single marker fitting  cannot capture the effect of allele due to 
imperfect LD lead to inflation of type 1 errors particularly using dense 
SNP set.

• Multiple testing problems.

Multiple Marker models can overcome these:

• Fits all SNPs simultaneously as random effects

• Distribution assumption for markers varies from model to model 

Schmid and Bennewitz, 2017



Demonstration in R


