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Description

= \What is GWAS and Work flow for GWAS
" Population stratification
= Methods to account for PS in GWAS

= Statistical methods for GWAS



Introduction
= A natural population survey to determine marker trait associations using
genome-wide markers.

= Exploits LD between markers

(Diversity Panel)

_ Phenotyping
G t
enotyping GWAS (Traits or morphological
(Haplotypes) iati
variations)

Statistical models
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Rational for Association mapping

* Individuals should be unrelated,
presumed to be distinct.

e Powerful for common variants and
Minor allele frequency need to be >
5%
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Rational for Association mapping

Sufficiently large sample

Polymorphic alleles covering whole
genome

Statistically powerful methods to detect
genetic associations

Individuals should be unrelated,
presumed to be distinct.

Powerful for common variants and Minor

allele frequency need to be > 5%

Power to dataect association
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[ Work flow for GWAS ]

= Genotyping rate, missing data (imputations)
= Minor allele frequency (ideal 5%)

= Heteroscedasticity

= Multicollinearity

[ Quality control }

I

[ Compute kinship and Population structure )

[ Perform statistical Associations ) > ®  Linear and Mixed Models

I

Identify associated loci ]

J

[ Downstream analysis ]

Tl

= PCA and Mixed model analysis

)




Population stratification

Difference in allele frequencies between sub-populations due to ancestry

= (Can lead to spurious associations if allele frequencies vary between subpopulations..

Population

0000 ' 0000

= Test statistics inflated, high false positive rate
" |Inflation of genomic heritability

= QOverestimation of prediction accuracy
Balding, 2006

https://www.nature.com/articles/nrg1916.pdf



Methods to control Population stratification

= Genomic Control: Estimates inflation factor A
A > 1 indicates stratification
Limitation: A same for all markers

= Structured Association methods: Assigns individuals to hypothetical
subpopulations

Correct number of subpopulations can never be fully resolved

" Principle component analysis: Provides fast and effective way to
diagnose the population structure

* Mixed-Model Approaches: Involves Kinship and cryptic relatedness



Principle Component Analysis

* Reduce dimensions of data into few components.

e PCA is to find a new set of orthogonal axes (PCs), each of which is made up
from a linear combination of the original axes

* Good in detecting major variations in data.

* PCA used in GWAS to generate axes of major genetic variation to account
for structure.
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How PCA is conducted to account for population structure
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Algorithm for PCA: Eigen and Single Value Decomposition

Step 1: Compute the variance-covariance as G= XXT/N-1

Step 2: Compute the Eigen decomposition of covariance matrix (G=UDUT)
Singular Value Decomposition SVD (X=U3VT) (in case of m x n matrix and dense SNP data)
U=is an n x m orthogonal matrix of dimensions n x m
>=1is a diagonal matrix of dimensions n x n

V= orthogonal matrix of n x n

= Singular-decomposition picks out directions in the data along
which the variance is maximised.

= Singular represent the variance of the data along these

directions.

Step 3: Select the top K eigenvalues/PCs that are statistically significant

Step 4: Include the significant eigenvectors in the linear regression model or genotype matrix in mixed model.



Observed —logqo(p)
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Accounting for Population structure

Expected p-values without accounting PS

Expected p-values after accounting PS
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\ Expected p-values under null hypothesis
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= PCA only accounts for fixed effects of genetic ancestry

" Does not account for relatedness between individuals.

Mixed Models
Use both fixed effects (candidate SNPs and fixed covariates) and random
effects (the Genotypic covariance matrix)
y=Wa + u+te
var(u)= 62K
K is Kinship matrix (pairwise genomic similarity of Individuals)
Structure of Kinship matrix reflects:
Population structure
Family structure
and Cryptic Relatedness

Peterson et al. 2010
doi: 10.1038/nrg2813



Linear Model
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GWAS using linear model and Mixed model

Korte and Farlow Plant Methods 2013, 9:29
http://www.plantmethods.com/content/9/1/29



Statistical methods for GWAS

Ordinary least squares

Model: y=Wa + e

To find “a”, effective size of SNP, we minimize the residual sum of squares.
And least square estimator of “a”

a” is given as
a=(WW) Wy

a is the vector of regression coefficient for markers, i.e., effect size of SNPs
if the Gauss-Markov theorem is met, E[a]=a - BLUE

Assumptions for Guass-Markov to hold true
= Population parameter linear

= No collinearity
No. of SNPs (n) is greater than individuals (m) n>>>m = Homoskesdactic errors

Ele] = 0, Varle] = Io2

(W*W)1 Does not exist, matrix is singular



Single marker regression

= One marker at a time tested for significance
= Problem: Marker effect may be exaggerated
The expectation of 4 is

E(&W) = (WW) 'WE(y) = (WW) 'WWa=a
OLS estimate for single SNP model

0y = (W, wy) lw’l}r

E(ai|wy) = (wyw1) "W\ E(y)
= (Wiwy) 'w)[wia; + waay]
= (wywy) 11';""’1’5""1'[11 + (wiwy) 1""";1“’233

— a1 + [w"lwl} IW;WEEE

= QLS is biased if full model holds but fit a mis-specified model
= the same applies when there are more than two SNPs



Linear mixed models for GWAS

* Single marker-based mixed model association (MMA)
* Fit one marker at a time (Yang et al. 2014)

y=p+wia;t+2g+e
g ~ N(0,Goy)

* G (genomic relation matrix) captures population structure and polygenic effects

» Double counting/fitting
SNP appears twice in model (once fixed and other time random)
Candidate/tested markers used to calculate structure and family relatedness

* Alternatively,

* Exclude candidate markers from G, using model one chromosome out
y=ptwa;+4gte
g~ N(0,G ;:U_g )

where —k denotes the kth chromosome removed



Comparison of K_Chr model and traditional Unified Mixed Linear Model in the Goodman
diversity panel (Maize diversity panel of 281 lines)

No. Significant No. Significant No. Significant No. Significant
_ Associations (5% FDR)  Associations (10% FDR)  Associations Identified  Associations Identified
| Ceneti Using K_chr Model  Using Traditional MLM
Trait Class  Architecture K Chr  Trad MIM K Chr  Trad MLM in Novel Regions in Novel Regions®
Carotenoid Polygenic 48 30 82 40 28
Tocochromanol ~ Polygenic 110 Il 207 146 47 6
Flowering time ~ Complex 0 0 0 0 0

Chen and Lipka, 2016
doi:10.1534/g3.116.029090/-/DC1



Multiple marker models

 Single marker fitting cannot capture the effect of allele due to
imperfect LD lead to inflation of type 1 errors particularly using dense
SNP set.

* Multiple testing problems.
Multiple Marker models can overcome these:
e Fits all SNPs simultaneously as random effects

n_SNP
Vi = 1+ E EJJ,'.?(,'J,' + €;.
j=1

e Distribution assumption for markers varies from model to model

Schmid and Bennewitz, 2017



Demonstration in R



