Genome-Wide Association Mapping and Population Stratification

Waseem Hussain Postdoctoral Research Associate

Description

- High-throughput phenotyping
- Basic Concepts of Association Mapping
- Work flow for Genome-wide association mapping (GWAS)
- Population stratification
- Methods to account for Population stratification (PS) in GWAS
- Statistical methods for GWAS

High-throughput Phenotyping

High-throughput Phenotyping

Why Mapping genes?

Find markers closely associated with gene for marker assisted gene introgression or predict the breeding value of line.

Family-based Linkage Mapping LD-based Association Mapping

Family Based-Linkage Mapping Greatly successful for major genes and rare variants

Drawbacks

- Small fraction of variation.
- Only alleles differing between parents.
- Low map genetic resolution-due to limited recombination.
- Inconsistency across mapping populations
- Linked markers not suitable for un-related genotypes.

Linkage Disequilibrium -based Association Mapping

- A natural population survey to determine marker trait associations using genome-wide markers.
- Exploits Linkage Disequilibrium (LD) between markers.
- LD is defined as non-random association of alleles.
- Power depends upon degree of LD between marker and functional variant.

What is Linkage Disequilibrium

LD measures

Commonly used to quantify LD is r²

$$r^{2} = \frac{D^{2}}{p_{A} (1 - p_{A}) p_{B} (1 - p_{B})}$$

$$D = p_{AB} - p_A p_B$$
$$= p_{AB} p_{ab} - p_{Ab} p_{aB}$$

Advantages of Association mapping

Conventional	LD mapping	
Biparental, structured	Natural/ breeding pool, not structured	
Few (6-7)	Several	
Less	High –Great resolution	
Explains between parents	Natural	
Less	more	
Not applicable	Effective	
Specific	Diverse genotypes	
More cost and labour	Less cost and reduced time	
	Biparental, structuredFew (6-7)LessExplains between parentsLessNot applicableSpecific	

General procedure for Association Mapping

Rational for Association mapping

- Powerful for common variants and Minor allele frequency need to be > 5%
- Sufficiently large sample
- Polymorphic alleles covering whole genome
- Statistically powerful methods to detect genetic associations

Population stratification

- Difference in allele frequencies between subpopulations due to ancestry
- Can lead to spurious associations if allele frequencies vary between subpopulations.

- Test statistics inflated, high false positive rate
- Inflation of genomic heritability
 Overestimation of prediction accuracy

Methods to control Population stratification

Genomic Control: Estimates inflation factor λ

 $\lambda > 1$ indicates stratification Limitation: λ same for all markers

 Structured Association methods: Assigns individuals to hypothetical subpopulations Correct number of subpopulations can never be fully resolved

 Principle component analysis: Provides fast and effective way to diagnose the population structure

Mixed-Model Approaches: Involves kinship and cryptic relatedness

Principle Component Analysis

- Reduce dimensions of data into few components.
- PCA is to find a new set of orthogonal axes (PCs), each of which is made up from a linear combination of the original axes
- Good in detecting major variations in data.
- PCA used in GWAS to generate axes of major genetic variation to account for structure.

Algorithm for PCA: Eigen and Single Value Decomposition

Step 1: Compute the variance-covariance as G= XX^T/N-1

Step 2: Compute the Eigen decomposition of covariance matrix (G=UDU^T)

Singular Value Decomposition SVD $(X=U\sum V^T)$ (in case of m x n matrix and dense SNP data)

U= is an n x m orthogonal matrix of dimensions n x m

 Σ = is a diagonal matrix of dimensions n x n

V= orthogonal matrix of n x n

- Singular-decomposition picks out *directions in the data along* which the variance is maximised.
- Singular represent the variance of the data along these directions.

Step 3: Select the top K eigenvalues/PCs that are statistically significant

Step 4: Include the significant eigenvectors in the linear regression model or genotype matrix in mixed model.

Mixed Models

 Use both fixed effects (candidate SNPs and fixed covariates) and random effects (the Genotypic covariance matrix)

y= Wa + u+ε

var(u)= 6²K

- K is Kinship matrix (pairwise genomic similarity of Individuals)
- Structure of Kinship matrix reflects: Population structure Family structure and Cryptic Relatedness

Statistical methods for GWAS

Ordinary least squares

Model: y= Wa + e

 To find "a", effective size of SNP, we minimize the residual sum of squares. And least square estimator of "a" is given as

 $\hat{\mathbf{a}} = (\mathbf{W}'\mathbf{W})^{-1}\mathbf{W}'\mathbf{y}$

 â is the vector of regression coefficient for markers, i.e., effect size of SNPs if the Gauss-Markov theorem is met, E[â]=a → BLUE

$$E[oldsymbol{\epsilon}]=0, Var[oldsymbol{\epsilon}]=\mathbf{I}\sigma_{\epsilon}^{2}$$

- No. of SNPs (n) is greater than individuals (m) n>>>m
- (W`W)-1 Does not exist, matrix is singular

Assumptions for Guass-Markov to hold true

- Population parameter linear
- No collinearity
- Homoskesdactic errors

Single marker regression

$$y_i = \mu + \beta_j \chi_{ij} + \varepsilon_i$$
Phenotype *j*th marker effect

- One marker at a time tested for significance Problem: Marker effect may be exaggerated The expectation of â is $E(\hat{\mathbf{a}}|\mathbf{W}) = (\mathbf{W}'\mathbf{W})^{-1}\mathbf{W}'E(\mathbf{y}) = (\mathbf{W}'\mathbf{W})^{-1}\mathbf{W}'\mathbf{W}\mathbf{a} = \mathbf{a}$ OLS estimate for single SNP model $\hat{a}_1 = (\mathbf{w}_1' \mathbf{w}_1)^{-1} \mathbf{w}_1' \mathbf{y}$ $E(\hat{a}_1|\mathbf{w}_1) = (\mathbf{w}_1'\mathbf{w}_1)^{-1}\mathbf{w}_1'E(\mathbf{y})$ $= (\mathbf{w}_1'\mathbf{w}_1)^{-1}\mathbf{w}_1'[\mathbf{w}_1\mathbf{a}_1 + \mathbf{w}_2\mathbf{a}_2]$ $= (\mathbf{w}_{1}'\mathbf{w}_{1})^{-1}\mathbf{w}_{1}'\mathbf{w}_{1}a_{1} + (\mathbf{w}_{1}'\mathbf{w}_{1})^{-1}\mathbf{w}_{1}'\mathbf{w}_{2}a_{2}$ $= a_1 + (\mathbf{w'_1w_1})^{-1} \mathbf{w'_1w_2} a_2$
- OLS is biased if full model holds but fit a mis-specified model
- the same applies when there are more than two SNPs

Single marker regression Considering Population Structure

- PCA only accounts for differences in sub-groups among subpopulations
- Does not account for family relatedness or kinship between individuals

Yu et al. (2006) Nat. Genet. 38: 203

Linear Mixed Models

Accounting for population structure and family relatedness Single marker based mixed model association

Realized relationship matrix G or A Captures population structure and polygenic effects

$$g \sim N(0, G\sigma_g^2)$$

Yu et al. (2006) Nat. Genet. 38: 203

• Double counting/fitting

SNP appears twice in model (once fixed and other time random) Candidate/tested markers used to calculate structure and family relatedness

• Alternatively,

• Exclude candidate markers from G, using model one chromosome out

$$\mathbf{y} = \mathbf{\mu} + \mathbf{w_j} \mathbf{a_j} + \mathbf{Z} \mathbf{g} + oldsymbol{\epsilon} \ \mathbf{g} \sim N(0, \mathbf{G}_{-k} \sigma_{g_{-k}}^2)$$

where -k denotes the kth chromosome removed

Comparison of K_Chr model and traditional Unified Mixed Linear Model in the Goodman diversity panel (Maize diversity panel of 281 lines)

Genetic Trait Class Architecture		No. Significant Associations (5% FDR)		No. Significant Associations (10% FDR)		No. Significant Associations Identified	No. Significant Associations Identified
	K_Chr	Trad. MLM	K_Chr	Trad. MLM	Using K_chr Model Using Traditional MLM in Novel Regions* in Novel Regions*		
Carotenoid	Polygenic	48	30	82	40	28	0
Tocochromanol	Polygenic	110	77	207	146	47	6
Flowering time	Complex	0	0	0	0	0	0

Chen and Lipka, 2016 doi:10.1534/g3.116.029090/-/DC1

Multiple Marker Models

• Fits all SNPs simultaneously as random effects

$$y_i = \mu + \sum_{j=1}^{n_snp} b_j x_{ij} + \varepsilon_i$$

- Distribution assumption for markers varies from model to model
- SNP BLUP- same variance
- **Bayes A**: assumes t-distribution
- **BayesB**: only fraction of SNPs has effect on variance
- BayesC: assumes t-distribution one with large variance for SNP fraction and other with small variance

GWAS Demonstration in R