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Description 
§ High-throughput phenotyping

§ Basic Concepts of Association Mapping

§ Work flow for Genome-wide association mapping (GWAS) 

§ Population stratification

§ Methods to account for Population stratification (PS) in GWAS

§ Statistical methods for GWAS 
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High-throughput Phenotyping
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Why Mapping genes?
Find markers closely associated with gene for marker assisted gene 
introgression or predict the breeding value of line.

Two Main Approaches

LD-based Association 
Mapping

Family-based Linkage 
Mapping



Family Based-Linkage Mapping
Greatly successful for major genes and rare variants

Drawbacks
§ Small frac@on of varia@on.
§ Only alleles differing between parents.
§ Low map gene@c resolu@on-due to limited  

recombina@on.
§ Inconsistency across mapping popula@ons
§ Linked markers not suitable for un-related 

genotypes.



Linkage Disequilibrium -based Association Mapping
§ A natural population survey to determine marker trait associations using  

genome-wide markers. 
§ Exploits Linkage Disequilibrium (LD) between markers.
§ LD is defined as non-random association of alleles.
§ Power depends upon degree of LD between marker and functional variant.

Unobserved causal locus



What is Linkage Disequilibrium

LD measures
Commonly used to quantify LD is r2



Advantages of Associa/on mapping





General procedure for Association Mapping



Ra#onal for Associa#on mapping 

§ Powerful for common variants and Minor 
allele frequency need to be > 5% 

§ Sufficiently large sample 
§ Polymorphic alleles covering whole genome 
§ Statistically powerful methods to detect 

genetic associations 

Balding, 2006 https://www.nature.com/articles/nrg1916.pdf 



Principal component analysis (PCA) and 
Mixed model analysis

Linear Mixed Models



Population stratification 

§ Test sta's'cs inflated, high false posi've rate  
§ Infla'on of genomic heritability

Overes'ma'on of predic'on accuracy 
Balding, 2006 https://www.nature.com/articles/nrg1916.pdf 

§ Difference in allele frequencies between sub-
popula'ons due to ancestry

§ Can lead to spurious associa'ons if allele frequencies 
vary between subpopula'ons.



Methods to control Population stratification 
§ Genomic Control: Estimates inflation factor λ
λ > 1 indicates stratification 
Limitation: λ same for all markers

§ Structured Association methods: Assigns individuals to hypothetical 
subpopulations
Correct number of subpopulations can never be fully resolved 

§ Principle component analysis: Provides fast and effective way to diagnose 
the population structure 

§ Mixed-Model Approaches: Involves kinship and cryptic relatedness 



Principle Component Analysis 

§ Reduce dimensions of data into few components. 
• PCA is to find a new set of orthogonal axes (PCs), each of which is 

made up from a linear combination of the original axes 
• Good in detecting major variations in data. 
• PCA used in GWAS to generate axes of major genetic variation to 
account for structure. 









§ Use both fixed effects (candidate SNPs and fixed covariates) 
and random effects (the Genotypic covariance matrix)

§ y= Wa + u+ε 
var(u)= б2K 
§ K is Kinship matrix (pairwise genomic similarity of Individuals)

§ Structure of Kinship matrix reflects: Population structure 
Family structure and Cryptic Relatedness 

Peterson et al. 2010 doi: 10.1038/nrg2813 

Mixed Models 





Sta$s$cal methods for GWAS 

§ Model: y= Wa + e 
§ To find “a”, effec$ve size of SNP, we minimize the residual sum 

of squares. And least square es$mator of “a” is given as 

§ â is the vector of regression coefficient for markers, i.e., effect 
size of SNPs if the Gauss-Markov theorem is met, E[â]=a → 
BLUE 

§ No. of SNPs (n) is greater than individuals (m) n>>>m 
§ (W`W)-1 Does not exist, matrix is singular 

Assumptions for Guass-Markov to hold true 
§ Population parameter linear
§ No collinearity
§ Homoskesdactic errors 

Ordinary least squares 



Single marker regression

Phenotype jth marker effect
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Single marker regression 
Considering Popula3on Structure
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Principle Components based on marker Data

§ PCA only accounts for differences in sub-groups among sub-
populations  

§ Does not account for family relatedness or kinship between 
individuals Yu et al. (2006) Nat. Genet. 38: 203 



Linear Mixed Models
Accounting for population structure and family relatedness

Single marker based mixed model association

!" = µ + &' ("' + )* + +"

Realized relationship matrix G or A 
Captures population structure and polygenic effects

g~ -(0, 12*3)

Yu et al. (2006) Nat. Genet. 38: 203 





Chen and Lipka, 2016 doi:10.1534/g3.116.029090/-/DC1 



• Fits all SNPs simultaneously as random effects 

§ Distribution assumption for markers varies from model to model
ØSNP BLUP- same variance
ØBayes A: assumes t-distribution
ØBayesB: only fraction of SNPs has effect on variance
ØBayesC: assumes t-distribution one with large variance for SNP fraction and other 

with small variance

Schmid and Bennewitz, 2017 
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Mul7ple Marker Models



GWAS Demonstration in R


